Source code for rubato.utils.vector

"""
A vector implementation.
"""
from __future__ import annotations
from typing import Iterator
import math, random

from . import Math, deprecated


[docs]class Vector: """ A Vector object that defines a 2D point in space Args: x: The x coordinate. Defaults to 0. y: The y coordinate. Defaults to 0. Attributes: x (float | int): The x coordinate. y (float | int): The y coordinate. """ def __init__(self, x: float | int = 0, y: float | int = 0): if type(x) in (float, int) and type(y) in (float, int): self.x, self.y = x, y else: raise TypeError(f"Vector must be initialized with two numbers (float or int) not: {x, y}.") @property def magnitude(self) -> float: """The magnitude of the vector. You can set to this value.""" return math.sqrt(self.x * self.x + self.y * self.y) @magnitude.setter def magnitude(self, value: float | int): if self.x == self.y == 0: return ratio = value * math.sqrt((self.x * self.x + self.y * self.y)**-1) self.x *= ratio self.y *= ratio @property def mag_sq(self) -> float: """The squared magnitude of the vector (readonly).""" return self.x * self.x + self.y * self.y @property def angle(self) -> float: """The angle of the vector in radians (readonly).""" return -math.degrees(math.atan2(-self.y, self.x) - Math.PI_HALF) @property def rationalized_mag(self) -> str: """ Returns a string representation of a rationalized vector magnitude as you would use in math class. Example: >>> Vector(8, 8).rationalized_mag 4√8 Warnings: Should only be used on vectors with integer components. """ divisible_by = Math.simplify_sqrt(round(self.mag_sq)) return f"{divisible_by[0] if divisible_by[0] != 1 else ''}{divisible_by[1]}" @property def rationalized_mag_vector(self) -> Vector: """ Returns a vector with the rationalized magnitude. Example: >>> Vector(8, 8).rationalized_mag rubato.Vector(4, 8) Warnings: Should only be used on vectors with integer components. """ return Vector(*Math.simplify_sqrt(round(self.mag_sq))) @property def rationalized_unit(self) -> str: """ Returns a string representation of a rationalized unit vector as you would use in math class. Warnings: Should only be used on vectors with integer components. """ mag: Vector = self.rationalized_mag_vector mag = mag.to_int() no_root = mag.y == 1 # No square root in the answer. num_dem1: Vector = Vector(*Math.simplify(round(self.x), mag.x)) num_dem2: Vector = Vector(*Math.simplify(round(self.y), mag.x)) if no_root: return f"<{num_dem1.x}/{num_dem1.y}, {num_dem2.x}/{num_dem2.y}>" return f"<{num_dem1.x}/{num_dem1.y}{mag.y}, {num_dem2.x}/{num_dem2.y}{mag.y}>"
[docs] def normalized(self, out: Vector = None) -> Vector: """ Determines the unit vector of this vector. Args: out (Vector, optional): The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: Vector: The vector output of the operation. """ if out is None: out = Vector() if self.mag_sq != 0: inv_mag = 1 / math.sqrt(self.mag_sq) else: inv_mag = 0 out.x, out.y = round(self.x * inv_mag, 10), round(self.y * inv_mag, 10) return out
[docs] @deprecated(normalized) def unit(self, out: Vector = None) -> Vector: """ Determines the unit vector of this vector. Args: out (Vector, optional): The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: Vector: The vector output of the operation. """ return self.normalized(out)
[docs] def normalize(self): """ Normalizes the current vector. """ self.unit(self)
[docs] def to_tuple(self) -> tuple: """ Returns the x and y coordinates of the vector as a tuple. """ return (*self,)
[docs] def dot(self, other: Vector) -> float | int: """ Takes the dot product of two vectors. Args: other: The other vector. Returns: The resulting dot product. """ return self.x * other.x + self.y * other.y
[docs] def cross(self, other: Vector) -> float | int: """ Takes the cross product of two vectors. Args: other: The other vector. Returns: The resultant scalar magnitude of the orthogonal vector along an imaginary z-axis. """ # note using matrix determinant return self.x * other.y - self.y * other.x
[docs] def perpendicular(self, scalar: float | int = 1, out: Vector = None) -> Vector: """ Computes a scaled 90 degree clockwise rotation on a given vector. Args: scalar: The scalar value. out: The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: The resultant vector when transformed. """ if out is None: out = Vector() out.x, out.y = scalar * self.y, -scalar * self.x return out
[docs] def clamp( self, lower: Vector | float | int, upper: Vector | float | int, absolute: bool = False, out: Vector = None ): """ Clamps x and y between the two values given. Args: lower: The lower bound. If a vector is specified, its x coord is used to clamp the x coordinate and same for y. upper: The upper bound. If a vector is specified, its x coord is used to clamp the x coordinate and same for y. absolute: Whether to clamp the absolute value of the vector instead of the actual value. Defaults to False. out: The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. """ if out is None: out = Vector() if not isinstance(lower, Vector): lower = Vector(lower, lower) if not isinstance(upper, Vector): upper = Vector(upper, upper) out.x = Math.clamp(self.x, lower.x, upper.x) out.y = Math.clamp(self.y, lower.y, upper.y) if absolute: out.x = abs(out.x) out.y = abs(out.y) return out
[docs] def rotate(self, angle: float | int, out: Vector = None) -> Vector: """ Rotates the vector by a given number of degrees. Args: angle: The rotation amount in north-degrees you want to rotate by (relative). out: The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: The resultant Vector. """ if out is None: out = Vector() radians = math.radians(-angle) c, s = math.cos(radians), math.sin(radians) out.x, out.y = round(self.x * c - self.y * s, 10), round(self.x * s + self.y * c, 10) return out
[docs] def to_int(self) -> Vector: """Returns a new vector with values that are ints.""" return Vector(round(self.x), round(self.y))
[docs] def tuple_int(self) -> tuple: """Returns a tuple with rounded values.""" return int(self.x), int(self.y)
[docs] def clone(self) -> Vector: """Returns a copy of the vector.""" return Vector(self.x, self.y)
[docs] def lerp(self, target: Vector, t: float, out: Vector = None) -> Vector: """ Lerps the current vector to target by a factor of t. Args: target: The target Vector. t: The lerping amount (between 0 and 1). out: The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: The resulting vector. """ if out is None: out = Vector() out.x, out.y = Math.lerp(self.x, target.x, t), Math.lerp(self.y, target.y, t) return out
[docs] def round(self, decimal_places: int = 0, out: Vector = None): """ Returns a new vector with the coordinates rounded. Args: decimal_places: The amount of decimal places rounded to. Defaults to 0. out (Vector, optional): The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: Vector: The resultant Vector. """ if out is None: out = Vector() out.x, out.y = round(self.x, decimal_places), round(self.y, decimal_places) return out
[docs] def ceil(self, out: Vector = None) -> Vector: """ Returns a new vector with the coordinates ciel-ed. Args: out (Vector, optional): The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: Vector: The resultant Vector. """ if out is None: out = Vector() out.x, out.y = math.ceil(self.x), math.ceil(self.y) return out
[docs] def floor(self, out: Vector = None) -> Vector: """ Returns a new vector with the coordinates floored. Args: out (Vector, optional): The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: Vector: The resultant Vector. """ if out is None: out = Vector() out.x, out.y = math.floor(self.x), math.floor(self.y) return out
[docs] def abs(self, out: Vector = None) -> Vector: """ Returns a new vector with the absolute value of the original coordinates. Args: out (Vector, optional): The output vector to set to. Defaults to a new vector. If you want the function to act on itself, set this value to the reference of the vector. Returns: Vector: The resultant Vector. """ if out is None: out = Vector() out.x, out.y = abs(self.x), abs(self.y) return out
[docs] def dir_to(self, other: Vector) -> Vector: """ Direction from the Vector to another Vector. Args: other: the position to which you are pointing Returns: A unit vector that is in the pointing to the other position passed in """ base = (other - self).unit() return base
def distance_between(self, other: Vector) -> float: return ((self.x - other.x)**2 + (self.y - other.y)**2)**0.5
[docs] @staticmethod def from_radial(magnitude: float, angle: float) -> Vector: """ Generates a Vector from the given angle and magnitude. Args: magnitude: Length of vector. angle: Direction of vector in North degrees. Returns: Vector from the given direction and distance """ radians = math.radians(-(angle - 90)) return Vector(round(math.cos(radians), 10) * magnitude, -round(math.sin(radians), 10) * magnitude)
[docs] @staticmethod def clamp_magnitude(vector: Vector, max_magnitude: float, min_magnitude: float = 0) -> Vector: """ Clamps the magnitude of the vector to the given range. Args: vector: The vector to clamp. max_magnitude: The maximum magnitude of the vector. min_magnitude: The minimum magnitude of the vector. Defaults to 0. Returns: A new vector with the magnitude clamped to the given range. """ vector_c = vector.clone() if (new := Math.clamp((magnitude := vector_c.magnitude), min_magnitude, max_magnitude)) != magnitude: vector_c.magnitude = new return vector_c
[docs] @classmethod def angle_between(cls, a: Vector, b: Vector) -> float: """ Returns the angle between two vectors (0 <= theta <= pi). Args: a: First vector. b: Second vector. Returns: Angle in degrees between the two vectors. """ return round(math.degrees(math.acos((a.dot(b)) / (a.magnitude * b.magnitude))), 10)
[docs] @classmethod def random_inside_unit_circle(cls) -> Vector: """ Returns a random unit vector inside the unit circle. Returns: Random vector inside the unit circle. """ return cls.from_radial(1, random.random() * 360)
[docs] @classmethod @property def zero(cls): """A zeroed Vector""" return Vector(0, 0)
[docs] @classmethod @property def one(cls) -> Vector: """A Vector with all ones""" return Vector(1, 1)
[docs] @classmethod @property def up(cls): """A Vector in the up direction""" return Vector(0, -1)
[docs] @classmethod @property def left(cls): """A Vector in the left direction""" return Vector(-1, 0)
[docs] @classmethod @property def down(cls): """A Vector in the down direction""" return Vector(0, 1)
[docs] @classmethod @property def right(cls): """A Vector in the right direction""" return Vector(1, 0)
[docs] @classmethod @property def infinity(cls): """A Vector at positive infinity""" return Vector(Math.INF, Math.INF)
def __eq__(self, other: Vector) -> bool: if isinstance(other, Vector): return self.y == other.y and self.x == other.x return False def __hash__(self): return hash((self.x, self.y)) def __gt__(self, other: Vector) -> bool: if isinstance(other, Vector): return self.x > other.x and self.y > other.y return False def __lt__(self, other: Vector) -> bool: if isinstance(other, Vector): return self.x < other.x and self.y < other.y return False def __ge__(self, other: Vector) -> bool: if isinstance(other, Vector): return self.x >= other.x and self.y >= other.y return False def __le__(self, other: Vector) -> bool: if isinstance(other, Vector): return self.x <= other.x and self.y <= other.y return False def __str__(self) -> str: return f"<{self.x}, {self.y}>" def __pow__(self, other: any) -> Vector: if isinstance(other, (int, float)): return Vector(self.x**other, self.y**other) if isinstance(other, Vector): return Vector(self.x**other.x, self.y**other.y) __ipow__ = __pow__ def __mul__(self, other: any) -> Vector: if isinstance(other, (int, float)): return Vector(self.x * other, self.y * other) if isinstance(other, Vector): return Vector(self.x * other.x, self.y * other.y) def __add__(self, other: any) -> Vector: if isinstance(other, (int, float)): return Vector(self.x + other, self.y + other) if isinstance(other, Vector): return Vector(self.x + other.x, self.y + other.y) __iadd__ = __add__ __imul__ = __mul__ __rmul__ = __mul__ __radd__ = __add__ def __sub__(self, other: any) -> Vector: if isinstance(other, (int, float)): return Vector(self.x - other, self.y - other) if isinstance(other, Vector): return Vector(self.x - other.x, self.y - other.y) def __rsub__(self, other: any) -> Vector: return Vector(other - self.x, other - self.y) __isub__ = __sub__ def __truediv__(self, other: any) -> Vector: if isinstance(other, (int, float)): return Vector(self.x / other, self.y / other) if isinstance(other, Vector): return Vector(self.x / other.x, self.y / other.y) def __rtruediv__(self, other: any) -> Vector: return Vector(other / self.x, other / self.y) __itruediv__ = __truediv__ def __floordiv__(self, other: any) -> Vector: if isinstance(other, (int, float)): return Vector(self.x // other, self.y // other) if isinstance(other, Vector): return Vector(self.x // other.x, self.y // other.y) def __rfloordiv__(self, other: any) -> Vector: return Vector(other // self.x, other // self.y) __ifloordiv__ = __floordiv__ def __mod__(self, other: any) -> Vector: if isinstance(other, (int, float)): return Vector(self.x % other, self.y % other) if isinstance(other, Vector): return Vector(self.x % other.x, self.y % other.y) def __rmod__(self, other: any) -> Vector: return Vector(other % self.x, other % self.y) __imod__ = __mod__ def __neg__(self) -> Vector: return Vector(-self.x, -self.y) def __iter__(self) -> Iterator[int]: return iter([self.x, self.y]) def __repr__(self): return f"rubato.Vector({self.x}, {self.y}) at {hex(id(self))}"
# Developer notes: # Angles are north degrees (clockwise from the +y-axis). # We do not use the built-in Math conversion functions, because they will just bloat our stack.